

DPP No. 80

Total Marks : 25

Max. Time : 26 min.

Type of Questions	M.M., Min.		
Comprehension (no negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9,	9]
Single choice Objective (no negative marking) Q.4,5,6	(3 marks, 3 min.)	[12,	12]
Subjective Questions (no negative marking) Q.7	(4 marks, 5 min.)	[4,	5]

COMPREHENSION (Q. 1 to 3)

Topic : Solution of Triangle

G is the centroid of triangle ABC. Perpendiculars from vertices A, B, C meet the sides BC, CA, AB at D, E, F respectively. P, Q, R are feet of the perpendiculars from G on sides BC, CA, AB respectively. L, M, N are the mid points of sides BC, CA, AB respectively, then

1. Length of the side PG is

3.

(A) $\frac{1}{2}$ b sin C (B) $\frac{1}{2}$ c sin C (C) $\frac{2}{3}$ b sin C (D) $\frac{1}{3}$ c sin B

2. (Area of \triangle GPL) to (Area of \triangle ALD) is equal to

(A) $\frac{1}{3}$	(B) <u>1</u> 9	(C) $\frac{2}{3}$	(D) $\frac{4}{9}$
Area of $\triangle PQR$ is			

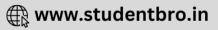
- (A) $\frac{1}{9}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (B) $\frac{1}{18}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (C) $\frac{2}{9}(a^2 + b^2 + c^2) \sin A \sin B \sin C$ (D) $\frac{1}{3}(a^2 + b^2 + c^2) \sin A \sin B \sin C$
- 4. If the incircle of the \triangle ABC touches its sides at L, M and N as shown in the figure and if x, y, z be the circumradii of the triangles MIN, NIL and LIM respectively, where I is the incentre, then the product xyz is equal to : (A) R r² (B) r R² (C) $\frac{1}{2}$ R r² (D) $\frac{1}{2}$ r R²
- 5. Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$ unit. Then the area of the triangle in sq. units is

(A)
$$7 + 12\sqrt{3}$$
 (B) $12 - 7\sqrt{3}$ (C) $12 + 7\sqrt{3}$ (D) 4π

- 6. If in triangle ABC, right angle at B, s a = 3 and s c = 2, then (A) a = 2, c = 3 (B) a = 3, c = 4 (C) a = 4, c = 3 (D) a = 6, c = 8
- 7. Circles with radii 3, 4 and 5 touch each other externally. If P is the point of intersection of tangents to these circles at their points of contact, find the distance of P from the points of contact.

CLICK HERE

Get More Learning Materials Here :


🕀 www.studentbro.in

Answers Key

- **1.** (D)
- **2.** (B)
- **3.** (B)
- **4.** (C)
- **5.** (C) **6.** (B) **7.** √5

Get More Learning Materials Here : 📕

